Nội dung khái quát cần nhớ
Khi giải một bài toán hình học không gian, học sinh cần thực hiện qua các bước cần thiết sau:
Đọc kĩ đề bài; phân tích giả thuyết của bài toán; vẽ hình đúng, đặc biệt cần xác định thêm các yếu tố khác: điểm phụ, đường phụ, mặt phẳng phụ (nếu cần) để phục vụ cho quá trình giải toán.
trong hệ thống lí thuyết và bài tập của hình học không gian, cũng như trong thực tiễn cuộc sống ta, có thể chia thành năm bài toán lớn:
Bài toán 1: “Tìm tương giao”, bao gồm: Giao điểm của hai đường thẳng, giao điểm của đường với mặt và giao tuyến của hai mặt phẳng.
Bài toán 2: “Quan hệ song song”, bao gồm chứng minh và dựng hình: Hai đường thẳng song song, đường thẳng song song với mặt phẳng, hai mặt phẳng song song.
Bài toán 3: “Quan hệ vuông góc” bao gồm chứng minh và dựng hình: Hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc.
Bài toán 4: “Bài toán về góc” bao gồm xác định và tính: Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng.
Bài toán 5: “Bài toán về khoảng cách” bao gồm xác định và tính: Khoảng cách từ một điểm đến một đường thẳng, khoảng cách từ một điểm đến một mặt phẳng, khoảng cách giữa hai đường thẳng song song, khoảng cách giữa hai mặt phẳng song song, khoảng cách giữa hai đường thẳng chéo nhau.
Trong mỗi bài toán lớn sẽ có bao gồm nhiều bài toán nhỏ, đặc điểm nữa là nó không tập trung ở một chương, một bài, không được giải quyết đồng bộ một lúc mà nó nằm rải rác trải dài theo các chương và các bài khác nhau.
Vậy để dạy tốt và học tốt, vấn đề đặt ra là người giáo viên phải biết hướng dẫn học sinh nắm vững được nội dung trọng tâm nhất, bài toán mấu chốt để các bài toán nhỏ khác có thể đưa về nó.
Như vậy sẽ tạo nên tính lôgic cao và có hệ thống, giảm tải được các nội dung trong lí thuyết cơ bản, học sinh nhớ được trọng tâm của các bài toán lớn.
Dùng sơ đồ tư duy hệ thống lý thuyết
Với sơ đồ tư duy, giáo viên có thể hệ thống lý thuyết giúp học sinh dễ hiểu, dễ nhớ. Giáo viên cũng có thể sử dụng cách này trong thực hành giải toán.
Cụ thể, trong bài toán tìm tương giao, giao điểm của hai đường thẳng, giao điểm của đường với mặt phẳng, giao tuyến của hai mặt phẳng thì tìm giao điểm của hai đường thẳng là mấu chốt cơ bản.
Điều kiện để hai đường thẳng cắt nhau là chúng đồng phẳng và có một điểm chung duy nhất. Các tương giao khác đều có thể đưa được về tương giao cơ bản này.
Sơ đồ tư duy để hệ thống lí thuyết dạng bài này như sau:
Bài toán “Quan hệ song song” được giới thiệu chủ yếu tập trung vào hai vấn đề là chứng minh quan hệ song song và dựa vào quan hệ song song để dựng hình. Trong bài toán “chứng minh quan hệ song song” thì chứng minh hai đường thẳng song song là mấu chốt cơ bản. Các bài toán chứng minh khác đều có thể đưa được về bài toán cơ bản này.
Để chứng minh đường thẳng a//b ta có thể sử dụng bốn cách chủ yếu sau:
Cách 1: Tìm được một mặt phẳng chứa hai đường thẳng a và b. Sau đó áp dụng phương pháp chứng minh song song của hình học phẳng như tính chất đường trung bình trong tam giác, định lí ta lét đảo, …
Cách 2: Sử dụng tính chất bắc cầu.
Cách 3: Sử dụng tính chất giao tuyến của ba mặt phẳng phân biệt.
Cách 4: Áp dụng hệ quả.
Sơ đồ tư duy để hệ thống lí thuyết dạng này như sau:
Trong bài toán quan hệ vuông góc tập trung vào bài toán chứng minh về các quan hệ vuông góc trong đó chứng minh hai đường thẳng vuông góc là mấu chốt cơ bản.
Các bài toán chứng minh khác đều có thể đưa về bài toán cơ bản này.
Sơ đồ tư duy để hệ thống lí thuyết dạng này như sau:
Bài toán về góc bao gồm xác định và tính: góc giữa hai đường thẳng, góc giữa đường thẳng với mặt phẳng, góc giữa hai mặt phẳng.
Trong đó, tính và xác định góc giữa hai đường thẳng là mấu chốt cơ bản. Các bài toán khác đều có thể đưa về bài toán cơ bản này.
Phương pháp tính góc giữa hai đường thẳng, áp dụng định nghĩa và các phương pháp tính góc của hình học phẳng (Thường gắn vào tam giác học dùng phương pháp véc tơ).
Sơ đồ tư duy dạng hệ thống lí thuyết:
Trong bài toán tính khoảng cách thì bài toán tính khoảng cách từ một điểm đến đường thẳng là mấu chốt cơ bản nhất. Các bài toán tính khoảng cách khác đều đưa về được bài toán cơ bản này.
Sơ đồ tư duy để hệ thống lí thuyết: